Wednesday, March 21 , 2018, 2:26 pm | Light Rain Fog/Mist 55º


UCSB Scientists Discover New Direction in Alzheimer’s Research

A protein called 'tau' helps explain the loss of neuron capacity in those with the disease

In what they are calling a new direction in the study of Alzheimer’s disease, UCSB scientists have made an important finding about what happens to brain cells that are destroyed in Alzheimer’s disease and related dementias. The results are published in the online version of the Journal of Biological Chemistry.

Graduate student Jack Reifert, left, and professor Stuart Feinstein have teamed up on Alzheimer's research.
Graduate student Jack Reifert, left, and professor Stuart Feinstein have teamed up on Alzheimer’s research. (George Foulsham photo / Office of Public Affairs)

“With dementia, the brain cells, or neurons, that you need for cognitive skills are no longer working properly,” said Stuart Feinstein, professor of Molecular, Cellular and Developmental Biology, senior author and co-director of UCSB’s Neuroscience Research Institute. “Then, they’re not even there anymore because they die. That’s what leads to dementia; you’re losing neuronal capacity.”

Feinstein has studied the protein called “tau” for about 30 years, using test tube biochemistry and a variety of cultured cells as models. Under normal conditions, tau is found in the long axons of neurons that serve to connect neurons with their targets, often far from the cell body itself. Among tau’s major functions is to stabilize microtubules, which are an integral part of the cellular cytoskeleton that is essential for many aspects of neuronal cell structure and function.

It has been known for many years that a small peptide named amyloid beta can cause neuronal cell death and Alzheimer’s disease, although the mechanism for how it works has been poorly understood. Recently, genetic evidence has demonstrated that the ability of amyloid beta to kill neurons requires tau; however, what it does to tau has been enigmatic.

“We know amyloid beta is a bad guy,” Feinstein said. “Amyloid beta causes disease; amyloid beta causes Alzheimer’s. The question is, how does it do it?”

He explained that most Alzheimer’s researchers would argue that amyloid beta causes tau to become abnormally and excessively phosphorylated. This means that the tau proteins get inappropriately chemically modified with phosphate groups.

“Many of our proteins get phosphorylated,” Feinstein said. “It can be done properly or improperly.”

Feinstein added that he and his students wanted to determine the precise details of the presumed abnormal phosphorylation of tau in order to gain a better understanding of what goes wrong.

“That would provide clues for drug companies; they would have a more precise target to work on,” Feinstein said. “The more precisely they understand the biochemistry of the target, the better attack a pharmaceutical company can make on a problem.”

Feinstein said that the team’s initial hypothesis suggesting that amyloid beta leads to extensive abnormal tau phosphorylation turned out not to be true.

“We all like to get a curve ball tossed our way once in a while, right?” Feinstein said. “You like to see something different and unexpected.”

The research team found that when they added amyloid beta to neuronal cells, the tau in those cells did not get massively phosphorylated, as predicted. Rather, the surprising observation was the complete fragmentation of tau within one to two hours of exposure of the cells to amyloid beta. Within 24 hours, the cells were dead.

Feinstein explained that tau has many jobs, but its best-understood job is to regulate the cellular cytoskeleton. Cells have a skeleton much like humans have a skeleton. The major difference is that human skeletons don’t change shape very abruptly, whereas a cell’s skeleton is constantly growing, shortening, and moving. It does this in order to help the cell perform many of its essential functions. The cytoskeleton is especially important to neurons because of their great length.

Feinstein argues that neurons die in Alzheimer’s disease because their cytoskeleton is not working properly.

“If you destroy tau, which is an important regulator of the microtubules, one could easily see how that could also cause cell death,” Feinstein said. “We know from cancer drugs that if you treat cells with drugs that disrupt the cytoskeleton, the cells die. In my mind, the same thing could be happening here.”

The Feinstein lab is now at work on the implications of the experiments described in the article.

Co-authors of the article are graduate student Jack Reifert and former graduate student DeeAnn Hartung-Cranston. The Journal of Biological Chemistry has been published for more than 100 years.

  • Ask
  • Vote
  • Investigate
  • Answer

Noozhawk Asks: What’s Your Question?

Welcome to Noozhawk Asks, a new feature in which you ask the questions, you help decide what Noozhawk investigates, and you work with us to find the answers.

Here’s how it works: You share your questions with us in the nearby box. In some cases, we may work with you to find the answers. In others, we may ask you to vote on your top choices to help us narrow the scope. And we’ll be regularly asking you for your feedback on a specific issue or topic.

We also expect to work together with the reader who asked the winning questions to find the answer together. Noozhawk’s objective is to come at questions from a place of curiosity and openness, and we believe a transparent collaboration is the key to achieve it.

The results of our investigation will be published here in this Noozhawk Asks section. Once or twice a month, we plan to do a review of what was asked and answered.

Thanks for asking!

Click here to get started >

Support Noozhawk Today

You are an important ally in our mission to deliver clear, objective, high-quality professional news reporting for Santa Barbara, Goleta and the rest of Santa Barbara County. Join the Hawks Club today to help keep Noozhawk soaring.

We offer four membership levels: $5 a month, $10 a month, $25 a month or $1 a week. Payments can be made through PayPal below, or click here for information on recurring credit-card payments.

Thank you for your vital support.

Reader Comments

Noozhawk is no longer accepting reader comments on our articles. Click here for the announcement. Readers are instead invited to submit letters to the editor by emailing them to [email protected]. Please provide your full name and community, as well as contact information for verification purposes only.

Daily Noozhawk

Subscribe to Noozhawk's A.M. Report, our free e-Bulletin sent out every day at 4:15 a.m. with Noozhawk's top stories, hand-picked by the editors.

Sign Up Now >