Thursday, May 24 , 2018, 11:52 pm | Overcast 58º

 
 
 
 

Polarizing Filter Lets Astronomers See Disks Surrounding Black Holes

The research team, including two UCSB physics professors, sheds light on how black holes consume matter and expand.

For the first time, a team of international researchers has found a way to view the accretion disks surrounding black holes and verify that their true electromagnetic spectra match what astronomers have long predicted they would be. Their work was published in Thursday’s issue of the science journal Nature.

A black hole and its bright accretion disk have been thought to form a quasar, the powerful light source at the center of some distant galaxies. Using a polarizing filter, the research team, which included Robert Antonucci and Omer Blaes, UCSB physics professors, isolated the light emitted by the accretion disk from that produced by other matter in the vicinity of the black hole.

“This work has greatly strengthened the evidence for the accepted explanation of quasars,” Antonucci said.

According to Antonucci, the physical process that astronomers find most appealing to explain a quasar’s energy source and light production involves matter falling toward a supermassive black hole and swirling around in a disk as it makes its way to the event horizon — the spherical surface that marks the boundary of the black hole. In the process, friction causes the matter to heat up such that it produces light in all wavelengths of the spectrum, including infrared, visible and ultraviolet. Finally, the matter falls into the black hole and thereby increases the black hole’s mass.

“If that’s true, we can predict from the laws of physics what the electromagnetic spectrum of the quasar should be,” Antonucci said. Testing the prediction has been impossible until now because astronomers have not been able to distinguish between the light emanating from the accretion disk and that of dust particle and ionized gas clouds in the area of the black hole.

By attaching a polarizing filter to the United Kingdom Infrared Telescope on Mauna Kea in Hawaii, the research team, led by Makoto Kishimoto, an astronomer with the Max-Plank Institute for Radio Astronomy in Bonn, and a former postdoctoral fellow at UCSB, eliminated the extraneous light and was able to measure the spectrum of the accretion disk. Doing so, they demonstrated that the spectrum matches what previously had been predicted.

The researchers also used extensive data gathered from the polarization analyzer of the Very Large Telescope, an observatory in Chile that is operated by the European Space Observatory.

What makes the polarizing filter able to perform its magic is the fact that direct light is not polarized — that is, it has no preference in terms of the directional alignment of its electrical field. The accretion disk emanates direct light, as do the dust particles and ionized gas. However, a small amount of light from the accretion disk, which is the exact light the researchers want to study, reflects off gas located very close to the black hole. This light is polarized.

“So if we plot only polarized light, it’s as if the additional light isn’t there and we can see the true spectrum of the accretion disk,” Antonucci said. “With this knowledge, we have a better understanding of how black holes consume matter and expand.”

Studying the spectrum of a glowing object such as a quasar provides astronomers with an incredible amount of valuable information about its properties and processes, Antonucci noted. “Our understanding of the physical processes in the disk is still rather poor, but now at least we are confident of the overall picture,” he said.

Andrea Estrada represents UCSB Internal Affairs.

Support Noozhawk Today

You are an important ally in our mission to deliver clear, objective, high-quality professional news reporting for Santa Barbara, Goleta and the rest of Santa Barbara County. Join the Hawks Club today to help keep Noozhawk soaring.

We offer four membership levels: $5 a month, $10 a month, $25 a month or $1 a week. Payments can be made through PayPal below, or click here for information on recurring credit-card payments.

Thank you for your vital support.

Become a Supporter

Enter your email
Select your membership level
×

Payment Information

You are purchasing:

Payment Method

Pay by Credit Card:

Mastercard, Visa, American Express, Discover

Pay with Apple Pay or Google Pay:

Noozhawk partners with Stripe to provide secure invoicing and payments processing.

  • Ask
  • Vote
  • Investigate
  • Answer

Noozhawk Asks: What’s Your Question?

Welcome to Noozhawk Asks, a new feature in which you ask the questions, you help decide what Noozhawk investigates, and you work with us to find the answers.

Here’s how it works: You share your questions with us in the nearby box. In some cases, we may work with you to find the answers. In others, we may ask you to vote on your top choices to help us narrow the scope. And we’ll be regularly asking you for your feedback on a specific issue or topic.

We also expect to work together with the reader who asked the winning questions to find the answer together. Noozhawk’s objective is to come at questions from a place of curiosity and openness, and we believe a transparent collaboration is the key to achieve it.

The results of our investigation will be published here in this Noozhawk Asks section. Once or twice a month, we plan to do a review of what was asked and answered.

Thanks for asking!

Click Here to Get Started >

Reader Comments

Noozhawk is no longer accepting reader comments on our articles. Click here for the announcement. Readers are instead invited to submit letters to the editor by emailing them to [email protected]. Please provide your full name and community, as well as contact information for verification purposes only.

Daily Noozhawk

Subscribe to Noozhawk's A.M. Report, our free e-Bulletin sent out every day at 4:15 a.m. with Noozhawk's top stories, hand-picked by the editors.

Sign Up Now >