Pixel Tracker

Tuesday, January 15 , 2019, 10:09 pm | Light Rain Fog/Mist 55º


Diane Dimond: Science Solves Crimes in Surprising Ways

There’s a new forensic tool that’s being developed that’s going to knock your socks off!

Investigative science professor Glen P. Jackson at West Virginia University spoke with me recently about his advances in crime fighting, and while it’s all kind of science-y, I think you’ll agree it is fascinating.

Jackson and his research team work with an apparatus called an isotope ratio mass spectrometer. It measures the ratios of particular isotopes that are found in different samples of material — specifically, human material like bones, fingernails, teeth and hair.

It doesn’t matter if the donor is dead or alive. A person’s individual isotopes, which are atoms that have the same number of protons but a different number of neutrons, speak volumes.

DNA or fingerprints must be matched to a known sample. The isotope procedure can squeeze way more information out of a human sample than other laboratory processes.

Jackson’s team has been focusing on what the human hair can reveal. Hair analysis isn’t new, of course, but Jackson says the method he’s working on gives up intimate details. It can tell the donor’s age group and if the donor is male or female, obese or slim, diabetic or on particular medications.

But his team deduces even more. By studying the isotopes in a length of hair, they can determine where a person has been in the world, and when they were there.

Here’s my layman’s translation: The hair soaks up and stores everything a person eats and drinks, and that leaves an isotopic signature in the hair shaft. Oxygen isotopes and rainfall composition vary from region to region, and so do the composition of edible plants and cattle. Since the hair is always absorbing and growing at a predictable rate, science is able to match hair isotope ratios to the region in which the donor ingested certain food and drink.

At one time, Jackson used himself as a guinea pig. For nine months, he collected his own beard hair every Monday, Wednesday and Friday, capturing it in a dry electric razor. He continued to do so when he traveled to Utah for a conference from his home in Ohio.

Jackson says his diet didn’t change during the trip; he’s a meat eater wherever he is. But his team found significantly different isotope ratios in his hair — specifically, carbon changes — after his trip to Utah.

“The difference was that in Utah, a lot of the beef is free-range rather than corn fed,” he told me.

When corn grows, it takes carbon dioxide out of the atmosphere and, in a slightly different way than other plants, turns it into sugar. Jackson’s hair registered the week-long switch to Utah’s free-range beef from corn-fed beef.

“Anything or anyone that comes along and eats the corn, or the corn syrup ... or the corn husks — which is the cows — they all then ingest those carbon atoms with that signature,” Jackson said.

Imagine how this geographic identification could help track the travel histories of suspected terrorists. Or those involved in cases of human trafficking or drug smuggling. The suspect could swear they had never been in a specific region, but their hair could prove them to be liars.

Worldwide, the isotope ratio mass spectrometer has already provided law enforcement with important clues to help identify the unknown dead.

In London, analysis of isotopes in human bones ultimately helped identify “Adam,” a decapitated child whose torso was found in the River Thames. The isotope ratios led investigators to Nigeria, where the 6-year-old boy had been smuggled out of the country and victimized in a human sacrifice ritual.

In Utah, the remains of a woman dubbed “​Saltair Sally” were found near the Great Salt Lake. With no way to identify her, her case remained cold for years. Finally, a dogged detective learned of isotope ratio analysis and submitted Sally’s hair for testing. Her strands acted “​like a filmstrip” of her life, and by following its geographic clues, the detective ultimately identified Sally as 20-year-old Nikole Bakoles from Midvale, Utah.

In Ireland, isotope ratios in the hair, nails and bones of a dismembered body found in Dublin’s Royal Canal helped investigators determine that the man had most likely come from the Horn of Africa. Scientists also determined he had spent seven months in Ireland before his death. This led detectives to arrest the grown daughters of the man’s lover. They were dubbed the “Scissor Sisters” for the murder weapon they used to kill him.

The National Institute of Justice has been contributing funds to research like Jackson’s for about five years, but he thinks at the current pace it might be another decade before the science is advanced enough to make its way into a crime lab near you.

Crime fighting is an expensive endeavor. Funding more forensic research like this — helping to create an isotopic map of the world so donor comparisons could be done faster and more reliably — seems like a no-brainer.

Diane Dimond is the author of Thinking Outside the Crime and Justice Box. Contact her at [email protected], follow her on Twitter: @DiDimond, or click here to read previous columns. The opinions expressed are her own.

Support Noozhawk Today

You are an important ally in our mission to deliver clear, objective, high-quality professional news reporting for Santa Barbara, Goleta and the rest of Santa Barbara County. Join the Hawks Club today to help keep Noozhawk soaring.

We offer four membership levels: $5 a month, $10 a month, $25 a month or $1 a week. Payments can be made using a credit card, Apple Pay or Google Pay, or click here for information on recurring credit-card payments and a mailing address for checks.

Thank you for your vital support.

Become a Noozhawk Supporter

First name
Last name
Select your monthly membership
Or choose an annual membership

Payment Information

Membership Subscription

You are enrolling in . Thank you for joining the Hawks Club.

Payment Method

Pay by Credit Card:

Mastercard, Visa, American Express, Discover
One click only, please!

Pay with Apple Pay or Google Pay:

Noozhawk partners with Stripe to provide secure invoicing and payments processing.
You may cancel your membership at any time by sending an email to .(JavaScript must be enabled to view this email address).

  • Ask
  • Vote
  • Investigate
  • Answer

Noozhawk Asks: What’s Your Question?

Welcome to Noozhawk Asks, a new feature in which you ask the questions, you help decide what Noozhawk investigates, and you work with us to find the answers.

Here’s how it works: You share your questions with us in the nearby box. In some cases, we may work with you to find the answers. In others, we may ask you to vote on your top choices to help us narrow the scope. And we’ll be regularly asking you for your feedback on a specific issue or topic.

We also expect to work together with the reader who asked the winning questions to find the answer together. Noozhawk’s objective is to come at questions from a place of curiosity and openness, and we believe a transparent collaboration is the key to achieve it.

The results of our investigation will be published here in this Noozhawk Asks section. Once or twice a month, we plan to do a review of what was asked and answered.

Thanks for asking!

Click Here to Get Started >

Reader Comments

Noozhawk is no longer accepting reader comments on our articles. Click here for the announcement. Readers are instead invited to submit letters to the editor by emailing them to [email protected]. Please provide your full name and community, as well as contact information for verification purposes only.