Saturday, June 23 , 2018, 4:35 pm | Overcast 68º


UCSB Researchers Discover Potential Therapy for Early Childhood Neurological Disease

A motor-impaired mouse with MLIV struggles to stay on a rotating rod. The test of agility was used to gauge a potential therapy for the neurological disease.
A motor-impaired mouse with MLIV struggles to stay on a rotating rod. The test of agility was used to gauge a potential therapy for the neurological disease. (Montell Lab photo)
Craig Montell Click to view larger
Craig Montell (Sonia Fernandez / The UCSB Current photo)
Marquis Walker Click to view larger
Marquis Walker (Courtesy photo)

Mucolipidosis IV (MLIV) is a devastating early childhood neurological disease characterized by progressive neurodegeneration, leading to severe impairments in muscle coordination, cognitive deficits and retinal degeneration that causes blindness.

There is no effective treatment for the condition, symptoms of which usually appear within a year of birth and whose rarity makes it a low priority for pharmaceutical companies.

But a possible first therapy has been discovered by biologist Craig Montell and his team of scientists at UC Santa Barbara.

In a new study, researchers in Montell’s lab found that bone marrow transplantation (BMT) significantly delayed the onset of motor deficits in an MLIV mouse model. Their findings appear in the journal Human Molecular Genetics.

MLIV is caused by mutations that eliminate the TRPML1 protein. TRPML1 is needed in small packages of the cell known as lysosomes, which are required for breaking down cellular components. Loss of TRPML1 causes the death of neurons.   

“The idea to try bone marrow transplantation came out of our earlier fruit fly model for MLIV,” said senior author Montell, the Robert and Patricia Duggan Chair in Mathematical, Life, and Physical Sciences in UCSB’s Department of Molecular, Cellular, and Developmental Biology. “Surprisingly, we found that the fly version of the TRPML1 protein was required not only in neurons but also in cells in the nervous system called glia, which eat up dying neurons.”

This process is called phagocytosis. In mammals, phagocytic brain cells — called microglia — provide an important protective mechanism by disposing of dying neurons. If that doesn’t happen, those neurons remain and release toxic agents that promote the rapid death of neighboring cells.

This amplification fosters disease progression in MLIV but has been shown to be greatly reduced in a fly model by restoring normal phagocytic glia.

“Because TRPML1 is also required in microglia, and normal microglia will get into the brain following BMT, we tried this approach in a mouse MLIV model,” Montell said.

The work was carried out in the mouse by lead author Marquis Walker, a postdoctoral researcher in Montell’s lab.

“When the BMT was performed on really young mice, the approach greatly delayed the onset of motor problems,” he said.

To test the rodents’ motor skills, the researchers used a rotarod assay. They placed normal and MLIV mice on a spinning rod and measured how long they were able to remain in position. The rotation speed started at 5 revolutions per minute and increased 1 rpm every 5 seconds.

At all ages, the normal mice stayed on the rotarod for about 2 minutes. For MLIV mice, age affected the length of time they were able to hang on.

At 6 weeks, the mutant animals were already performing below the level of normal mice. They became progressively compromised and by 32 weeks were unable to stay on the rod.

“This work shows that BMT prevented the amplification process, which in turn delayed the degradation of motor skills,” Montell said.

Bone marrow transplantation had been tried for other lysosomal storage disorders for enzyme replacement, he noted, but had not previously been considered for MLIV since the problem was with the TRPML1 channel protein rather than with lysosomal enzymes.

“This is not the end of the story,” Montell added. “While this latest work suggests a potential therapy, more research needs to be done. The next step would be to use an MLIV mouse model to determine how certain drugs or amino acid supplementation — both of which have shown some promise — work in combination with BMT.”

Julie Cohen writes for the UCSB Office of Public Affairs and Communications.


Support Noozhawk Today

You are an important ally in our mission to deliver clear, objective, high-quality professional news reporting for Santa Barbara, Goleta and the rest of Santa Barbara County. Join the Hawks Club today to help keep Noozhawk soaring.

We offer four membership levels: $5 a month, $10 a month, $25 a month or $1 a week. Payments can be made through PayPal below, or click here for information on recurring credit-card payments.

Thank you for your vital support.

Become a Noozhawk Supporter

First name
Last name
Enter your email
Select your membership level

Payment Information

You are purchasing:

Payment Method

Pay by Credit Card:

Mastercard, Visa, American Express, Discover

Pay with Apple Pay or Google Pay:

Noozhawk partners with Stripe to provide secure invoicing and payments processing.

  • Ask
  • Vote
  • Investigate
  • Answer

Noozhawk Asks: What’s Your Question?

Welcome to Noozhawk Asks, a new feature in which you ask the questions, you help decide what Noozhawk investigates, and you work with us to find the answers.

Here’s how it works: You share your questions with us in the nearby box. In some cases, we may work with you to find the answers. In others, we may ask you to vote on your top choices to help us narrow the scope. And we’ll be regularly asking you for your feedback on a specific issue or topic.

We also expect to work together with the reader who asked the winning questions to find the answer together. Noozhawk’s objective is to come at questions from a place of curiosity and openness, and we believe a transparent collaboration is the key to achieve it.

The results of our investigation will be published here in this Noozhawk Asks section. Once or twice a month, we plan to do a review of what was asked and answered.

Thanks for asking!

Click Here to Get Started >

Reader Comments

Noozhawk is no longer accepting reader comments on our articles. Click here for the announcement. Readers are instead invited to submit letters to the editor by emailing them to [email protected]. Please provide your full name and community, as well as contact information for verification purposes only.

Daily Noozhawk

Subscribe to Noozhawk's A.M. Report, our free e-Bulletin sent out every day at 4:15 a.m. with Noozhawk's top stories, hand-picked by the editors.

Sign Up Now >