Monday, November 12 , 2018, 10:02 pm | Fair 50º

 
 
 
 

UCSB Study Examines Role of Microbes and Their Effect on Infectious Disease Dynamics

The adult human body is made up of about 37 trillion cells. Microbes, mainly bacteria, outnumber body cells by 10 to 1. Increasingly, scientists recognize that this huge community of microbes, called the microbiome, affects the health, development and evolution of all multicellular organisms, including humans.

Andrea Jani
Andrea Jani

Studies show symbiotic microbes can help prevent infection by disease-causing pathogens. But sometimes the interaction goes the other way, with a pathogen or disease disrupting the normal community of symbiotic bacteria. In a new study, a team of scientists from UC Santa Barbara demonstrates that a fungal pathogen of amphibians does just that.

The findings appear Monday in the Early Edition of the Proceedings of the National Academy of Science.

Landmark experiments with model organisms such as mice have shown that infectious pathogens can disrupt the “normal” microbiome, but the extent to which this process shapes symbiotic microbial communities during disease outbreaks in nature is largely unknown.

This new work, conducted by Andrea Jani, a UCSB graduate student in Cherie Briggs’ lab in the Department of Ecology, Evolution and Marine Biology (EEMB), addresses a fundamental gap in disease ecology and microbiome research.

Co-authors Jani and Briggs — also affiliated with UCSB’s Biomolecular Science and Engineering program — found that the chytrid fungus Batrachochytrium dendrobatidis (Bd) appears to drive dramatic changes in symbiotic bacterial communities during natural disease episodes in four populations of the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Chytridiomycosis, an emerging infectious disease of amphibian skin caused by the Bd pathogen, is a leading cause of amphibian biodiversity loss worldwide.

“In the California Sierra Nevada, this disease has led to the rapid extirpation of frogs from hundreds of high-elevation lakes; however, in other lakes, infected frogs of the same species are surviving and persisting with the fungus,” explained Briggs, who is the Duncan and Suzanne Mellichamp Chair in Systems Biology. “Given that amphibian skin is the organ infected by Bd, there has been a lot of interest in how antifungal properties of some skin-associated bacteria may protect frogs against this fungal pathogen. In this study we focused on the flip side of this interaction — that is, how infection with Bd can disrupt the skin microbial community.”   

“We used next-generation DNA sequencing to document significant shifts in skin-associated bacterial communities of the Sierra Nevada yellow-legged frog during natural Bd outbreaks,” Jani explained. “We paired these field surveys with a laboratory infection experiment, demonstrating a causal relationship in which Bd alters the Rana sierrae microbiome.”

The researchers found a remarkable consistency in the response of the microbiome to Bd infection among field populations and between the field and laboratory. Several key taxa — a group of one or more populations of an organism or organisms — consistently responded in the same direction to Bd infection, suggesting some predictability in the effect of Bd on the microbiome.

Cherie Briggs
Cherie Briggs (Spencer Bruttig / UCSB photo)

“What we found was that the severity of infection with Bd is strongly correlated with the composition of bacterial communities on the skin of frogs,” Jani continued. “What was surprising was that across the different frog populations there was pretty striking consistency in this correlation with Bd. One of the frog populations crashed due to Bd infection; the other three populations seemed to tolerate Bd infections. So there are different disease dynamics going on, yet they have a similar relationship between the microbiome and Bd.”

Still, the underlying mechanism for Bd-induced changes in the microbiome is not clear. The researchers hypothesize that the pathogen might compete directly with certain bacteria for space or resources or release compounds that negatively or positively affect certain bacterial species. Alternatively, they say, some pathogens could control immune responses of the host to favor their own growth and disrupt the normal symbiotic bacterial community.

Jani noted that some promise exists for probiotic treatments as a tool to fight the decline of frogs due to Bd, but she was careful to qualify that statement by saying that there is still a lot that scientists do not understand about either the environmental impact that might have or what the interactions are between the natural bacteria that exist on frogs and the pathogen.

“We find that some taxa previously identified as having anti-Bd properties are driven to low abundances by Bd infection, which may limit their effectiveness as probiotic agents,” she said.

“This study shows the importance of knowing how the many benign microbes living on and in our bodies interact with those that cause disease,” said Sam Scheiner, National Science Foundation (NSF) director for the joint NSF/National Institutes of Health/United States Department of Agriculture Ecology and Evolution of Infectious Disease Program, which funded the research. “The results are important for developing responses to a disease causing amphibians to go extinct worldwide and also have implications for future studies of human health.”

— Julie Cohen represents the UCSB Office of Public Affairs and Communications.

Support Noozhawk Today

You are an important ally in our mission to deliver clear, objective, high-quality professional news reporting for Santa Barbara, Goleta and the rest of Santa Barbara County. Join the Hawks Club today to help keep Noozhawk soaring.

We offer four membership levels: $5 a month, $10 a month, $25 a month or $1 a week. Payments can be made using a credit card, Apple Pay or Google Pay, or click here for information on recurring credit-card payments and a mailing address for checks.

Thank you for your vital support.

Become a Noozhawk Supporter

First name
Last name
Email
Select your monthly membership
Or choose an annual membership
×

Payment Information

Membership Subscription

You are enrolling in . Thank you for joining the Hawks Club.

Payment Method

Pay by Credit Card:

Mastercard, Visa, American Express, Discover
One click only, please!

Pay with Apple Pay or Google Pay:

Noozhawk partners with Stripe to provide secure invoicing and payments processing.
You may cancel your membership at any time by sending an email to .(JavaScript must be enabled to view this email address).

  • Ask
  • Vote
  • Investigate
  • Answer

Noozhawk Asks: What’s Your Question?

Welcome to Noozhawk Asks, a new feature in which you ask the questions, you help decide what Noozhawk investigates, and you work with us to find the answers.

Here’s how it works: You share your questions with us in the nearby box. In some cases, we may work with you to find the answers. In others, we may ask you to vote on your top choices to help us narrow the scope. And we’ll be regularly asking you for your feedback on a specific issue or topic.

We also expect to work together with the reader who asked the winning questions to find the answer together. Noozhawk’s objective is to come at questions from a place of curiosity and openness, and we believe a transparent collaboration is the key to achieve it.

The results of our investigation will be published here in this Noozhawk Asks section. Once or twice a month, we plan to do a review of what was asked and answered.

Thanks for asking!

Click Here to Get Started >

Reader Comments

Noozhawk is no longer accepting reader comments on our articles. Click here for the announcement. Readers are instead invited to submit letters to the editor by emailing them to [email protected]. Please provide your full name and community, as well as contact information for verification purposes only.