Monday, October 22 , 2018, 3:38 am | Fog/Mist 62º

 
 
 
 

UCSB’s Jayich Lab Develops New Sensor Technology for Capturing Nancoscale Images

Ania Jayich Click to view larger
Ania Jayich (Sonia Fernandez / The UCSB Current photo)

If using a single atom to capture high-resolution images of nanoscale material sounds like science fiction, think again. That’s exactly what the Quantum Sensing and Imaging Group at UC Santa Barbara has achieved.

Members of physicist Ania Jayich’s lab worked for two years to develop a radically new sensor technology capable of nanometer-scale spatial resolution and exquisite sensitivity. Their findings appear in the journal Nature Nanotechnology.

“This is the first tool of its kind,” said Jayich, UCSB’s Bruker Endowed Chair in Science and Engineering and associate director of the campus’s Materials Research Lab. “It operates from room temperature down to low temperatures, where a lot of interesting physics happens. When thermal energy is low enough, the effects of electron interactions, for instance, become observable, leading to new phases of matter. And we can now probe these with unprecedented spatial resolution.”

Under the microscope, the unique single-spin quantum sensor resembles a toothbrush. Each “bristle” contains a single solid nanofabricated diamond crystal with a special defect, a nitrogen-vacancy (NV) center, located at the tip.

Two adjacent atoms are missing in the diamond’s carbon lattice, and one space has been filled with a nitrogen atom, allowing for the sensing of specific material properties, particularly magnetism. These sensors were manufactured in the clean room of UCSB’s Nanofabrication Facility.

The team chose to image a relatively well-studied superconducting material containing magnetic structures called vortices — localized regions of magnetic flux. With their instrument, the researchers were able to image individual vortices.

“Our tool is a quantum sensor because it relies on the bizarreness of quantum mechanics,” Jayich explained. “We put the NV defect into a quantum superposition where it can be one state or another — we don’t know — and then we let the system evolve in the presence of a field and measure it. This superposition uncertainty is what allows that measurement to occur.”

Such quantum behavior is often associated with low-temperature environments. However, the group’s specialized quantum instrument operates at room temperature and all the way down to 6 Kelvin (almost -450° Fahrenheit), making it very versatile, unique and capable of studying various phases of matter and the associated phase transitions.

A scanning electron microscope image of a typical diamond cantilever fabricated for magnetometry. Click to view larger
A scanning electron microscope image of a typical diamond cantilever fabricated for magnetometry. (Jayich Lab image)

“A lot of other microscopy tools don’t have that temperature range,” Jayich explained. “Further highlights of our tool are its excellent spatial resolution, afforded by the fact that the sensor comprises a single atom. Plus, its size makes it non-invasive, meaning it minimally affects the underlying physics in the materials system.”

The team is currently imaging skyrmions — quasiparticles with magnetic vortex-like configurations — with immense appeal for future data storage and spintronic technologies. Leveraging their instrument’s nanoscale spatial resolution, they aim to determine the relative strengths of competing interactions in the material that give rise to skyrmions.

“There are a lot of different interactions between atoms, and you need to understand all of them before you can predict how the material will behave,” Jayich said.

“If you can imagine the size of the material’s magnetic domains and how they evolve on small-length scales, that gives you information about the value and strength of these interactions,” Jayich added. “In the future, this tool will aid in understanding the nature and the strength of interactions in materials that then give rise to interesting new states and phases of matter, which are interesting from a fundamental physics perspective but also for technology.”

This research was supported by an Air Force Office of Scientific Research Presidential Early Career Award for Scientists and Engineers award, the Defense Advanced Research Projects Agency’s Quantum-Assisted Sensing and Readout program and the Materials Research Science and Engineering Center program of the National Science Foundation.

UCSB co-authors include postdoctoral scholars Matthew Pelliccione, graduate students Alec Jenkins and Preeti Ovartchaiyapong and undergraduate student Christopher Reetz. Additional co-authors are Eve Emmanuelidu and Ni Ni of UC Los Angeles.

Julie Cohen writes for the UCSB Office of Public Affairs and Communications.

 

Support Noozhawk Today

You are an important ally in our mission to deliver clear, objective, high-quality professional news reporting for Santa Barbara, Goleta and the rest of Santa Barbara County. Join the Hawks Club today to help keep Noozhawk soaring.

We offer four membership levels: $5 a month, $10 a month, $25 a month or $1 a week. Payments can be made using a credit card, Apple Pay or Google Pay, or click here for information on recurring credit-card payments and a mailing address for checks.

Thank you for your vital support.

Become a Noozhawk Supporter

First name
Last name
Email
Select your monthly membership
Or choose an annual membership
×

Payment Information

Membership Subscription

You are enrolling in . Thank you for joining the Hawks Club.

Payment Method

Pay by Credit Card:

Mastercard, Visa, American Express, Discover
One click only, please!

Pay with Apple Pay or Google Pay:

Noozhawk partners with Stripe to provide secure invoicing and payments processing.
You may cancel your membership at any time by sending an email to .(JavaScript must be enabled to view this email address).

  • Ask
  • Vote
  • Investigate
  • Answer

Noozhawk Asks: What’s Your Question?

Welcome to Noozhawk Asks, a new feature in which you ask the questions, you help decide what Noozhawk investigates, and you work with us to find the answers.

Here’s how it works: You share your questions with us in the nearby box. In some cases, we may work with you to find the answers. In others, we may ask you to vote on your top choices to help us narrow the scope. And we’ll be regularly asking you for your feedback on a specific issue or topic.

We also expect to work together with the reader who asked the winning questions to find the answer together. Noozhawk’s objective is to come at questions from a place of curiosity and openness, and we believe a transparent collaboration is the key to achieve it.

The results of our investigation will be published here in this Noozhawk Asks section. Once or twice a month, we plan to do a review of what was asked and answered.

Thanks for asking!

Click Here to Get Started >

Reader Comments

Noozhawk is no longer accepting reader comments on our articles. Click here for the announcement. Readers are instead invited to submit letters to the editor by emailing them to [email protected]. Please provide your full name and community, as well as contact information for verification purposes only.